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Abstract
We study the influence of the relative size of the reservoir on the adsorption isotherms of a fluid
in disordered or inhomogeneous mesoporous solids. We consider both an atomistic model of a
fluid in a simple, yet structured pore, whose adsorption isotherms are computed by molecular
simulation, and a coarse-grained model for adsorption in a disordered mesoporous material,
studied by a density functional approach in a local mean-field approximation. In both cases, the
fluid inside the porous solid exchanges matter with a reservoir of gas that is at the same
temperature and chemical potential and whose relative size can be varied, and the control
parameter is the total number of molecules present in the porous sample and in the reservoir.
Varying the relative sizes of the reservoir and the sample within experimental range may change
the shape of the hysteretic isotherms, leading to a ‘re-entrant’ behavior compared to the
grand-canonical isotherm when the latter displays a jump in density. We relate these
phenomena to the organization of the metastable states that are accessible for the adsorbed fluid
at a given chemical potential or density.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Under confinement in disordered mesoporous materials,
the characteristic timescale for relaxation of a fluid can
become extremely long. As a result, and although not
always appreciated, equilibrium is often not attained and,
accordingly, bona fide thermodynamic transitions such as the
liquid–gas transition in one-component fluids or macroscopic
phase separation in mixtures, are unobservable. ‘Capillary
condensation’ in disordered solids is an out-of-equilibrium
phenomenon, as illustrated by the irreversibility and hysteresis
effects found in experiments. One typically observes a
hysteresis loop that describes the isothermal evolution of the
amount of fluid adsorbed in the porous solid as a function of
the applied pressure, with branches that differ on adsorption
(filling) and on desorption (draining). This hysteresis loop
appears rate-independent, and its size and shape vary with
temperature as well as with the characteristics of the solid
(e.g. its porosity) or those of the solid–fluid interaction

potential. Such a phenomenon is related to the existence of
a large number of ‘metastable states’ in which the system can
be trapped on the experimental timescale; evolution from one
metastable state to another then only occurs as a result of
the action of the applied pressure (or equivalently, chemical
potential) and it proceeds through a sequence of irreversible
cooperative condensation (or evaporation) events, generically
denoted as ‘avalanches’ [1]. The fact that the location and the
shape of the hysteresis loop are reproducible in experiments
indicates that the observation time is smaller than the time
to reach the global equilibrium state, but is larger than local
equilibration processes by which the system settles in one
metastable state. As a result, the behavior of a fluid during
filling or draining in disordered mesoporous materials can be
rationalized by envisaging the evolution of the system in a
free-energy landscape characterized by many local minima,
i.e. metastable states [2–4].

The above picture of gas adsorption in disordered porous
media brings in a strong analogy with the out-of-equilibrium
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response of systems driven by an external force in the presence
of impurities or other types of quenched disorder. This is
for example the case of magnetization cycles in ferromagnetic
materials when a magnetic field is ramped up and down
and of hysteretic martensitic transformations in alloys [5];
in both examples, avalanches can be detected through some
‘crackling noise’ [6], magnetic Barkhausen noise in the former,
acoustic emission in the latter. In such driven disordered
systems, one expects the occurrence of out-of-equilibrium
phase transitions as one changes, on top of the driving force,
some external parameters such as the temperature or the
characteristics of the intrinsic disorder (e.g. the porosity in
a porous solid) [7]. The branches of the hysteresis loop, in
particular the adsorption and the desorption isotherms, may
then display jumps (discontinuities): indications for such
behavior are for instance seen in the adsorption of helium in
very light aerogels [8–10].

Such discontinuities and out-of-equilibrium phase transi-
tions, however, are theoretically predicted on the basis of a
grand-canonical set-up (for gas adsorption) in which the gas
reservoir is infinite. In real experiments, the reservoir has a fi-
nite size which may not always be large enough for considering
that the fluid inside the porous material is in a grand-canonical
ensemble with fixed chemical potential. What should be ex-
pected in such situations? The evolution of the system among
metastable states may depend on the specific experimental set-
up. As far as we know, there has been no systematic experi-
mental study of the effect of changing the size of the gas reser-
voir (relative to that of the porous medium) and no estimate
of the condition under which a grand-canonical situation is ap-
proximately reached. Answering these questions is the primary
goal of the present paper.

The question of the dependence of the hysteretic response
on the chosen control parameter has been a little more studied
in other driven disordered systems. Two extreme cases have
been considered: the response of an extensive quantity to
a change in the (conjugate) ‘force’ and the response of an
intensive quantity (a force) to a change in the conjugate
extensive quantity; the former is akin to the grand-canonical
situation for a fluid in which the chemical potential (or actually,
the pressure in the gas reservoir) is controlled and the latter to
a canonical situation in which the number of adsorbed fluid
molecules is controlled. Examples of such studies are found
in the context of martensitic transformations in which either
stress or strain is controlled [11] and in that of Barkhausen
noise in which either magnetic field or, via some feed-back
mechanism, magnetization is controlled [5]. In all cases, the
loop obtained with the extensive variable as control parameter
appears as re-entrant when compared to that obtained with the
force as control parameter. (For a theoretical study, see [12].)

One anticipates that the influence of the relative size
of the reservoir3 on the adsorption isotherms of a fluid
in a disordered porous material is intimately connected to
the organization of the metastable states in the adsorbed-
density/chemical potential plane. Indeed, when the isotherms

3 In general, both the system, i.e. the sample with the porous medium, and
the reservoir are taken in the thermodynamic limit yet the reservoir can be of
negligible size compared to the system.

are smooth, both on adsorption and on desorption, one may
experimentally probe metastable states located inside the
main hysteresis loop by studying ascending and descending
‘scanning curves’, which involve partial filling or draining [5].
These curves lead to a variety of hysteretic subloops that
provide direct evidence for the presence of metastable states
inside the main loop [13–15]. Actually, metastable states
are expected everywhere inside the latter. The situation is
quite different, however, when the adsorption or the desorption
branch displays a jump (in a grand-canonical setting with a
very large reservoir). A discontinuity prevents the realization
of scanning curves in some portion of the isotherm. As a
result, part of the interior of the main hysteresis loop is now
inaccessible.

In the present work we address the above questions,
namely the effect of the relative size of the gas reservoir
on the adsorption isotherms of a fluid in a disordered
or inhomogeneous porous solid and the connection to the
distribution of metastable states inside the hysteresis loop. We
show that even when the grand-canonical isotherms display
discontinuous jumps, there are branches of metastable states
inside the main hysteresis loop and that many of these states
can be reached by varying the relative size of the reservoir, the
smaller the reservoir the larger the extent to which the branches
of metastable states are probed. In particular, the extent is
maximal when the reservoir is so small that the fluid inside the
porous solid behaves as in a canonical situation of fixed number
of adsorbed molecules. When compared to the loop obtained
for an infinite reservoir (grand-canonical situation) and plotted
as the amount adsorbed versus the chemical potential, the
hysteresis loop for a finite reservoir size then appears as re-
entrant. On the contrary, when the isotherms are smooth
(continuous), there is no influence of the size of the reservoir.

The rest of the paper is organized as follows:
In section 2, we introduce the two models that have

been investigated and give some details on the methods used
to compute the adsorption isotherms. We have considered:
(i) an atomistic model of a fluid in simple, yet structured
pores, whose adsorption isotherms are computed by molecular
simulation, and (ii) a coarse-grained model for adsorption
in a disordered mesoporous material, studied by a density
functional approach in a local mean-field approximation. In
both cases, the fluid inside the porous solid exchanges matter
with a reservoir of gas that is at the same temperature and
chemical potential and whose relative size can be varied. The
overall system composed of the sample plus the reservoir is
taken in the canonical ensemble, with the total number of
molecules as control parameter. The two models do not address
the same physical situation but are complementary. The model
(i) exhibits a low degree of disorder, with only few metastable
states: it provides a comprehensive understanding of the nature
of the metastable states at a molecular level and the transitions
between them. On the other hand, the model (ii) incorporates
the energetic and geometric disorder of a real mesoporous solid
and produces results [2, 3] which could be compared to the
behavior observed in experiments.

In section 3, we present the results for the atomistic
model. The simplicity of the system allows one to get a
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clear interpretation of the physical nature of the branches of
metastable states, whose number is limited. The existence
of metastable states is a direct consequence of the intrinsic
inhomogeneity of the pore space. As the relative size of the gas
reservoir is varied, we find that the exploration of the branches
changes, the isotherm displaying larger jumps in the adsorbed
density as the size increases.

Section 4 is devoted to the coarse-grained model of a
disordered porous material. The number of metastable states
is now enormous, since it is likely to increase exponentially
with the size of the sample. We find a drastic change of
behavior between the ‘strong-disorder’ regime for which the
isotherm is continuous and the ‘weak-disorder’ one for which
the isotherm, here the adsorption isotherm on which we focus
our study, displays a jump corresponding to a macroscopic
avalanche. In the former regime, the isotherm does not display
any dependence on the relative size of the reservoir, whereas
in the latter, it is re-entrant for finite reservoir sizes, the more
so as one decreases the reservoir size, and it shows increasing
jumps in adsorbed density with increasing reservoir size.

Finally, we summarize our main results and give our
conclusions in section 5. In particular, we discuss the relevance
of our study to experimental situations and we stress the
important role of the intrinsic inhomogeneity induced by the
solid matrix.

2. Models and methods

2.1. The set-up: sample plus reservoir

The principles of the method are the following. One considers
a starting situation where N particles are placed inside two
cells which are in thermal equilibrium with an infinite heat
bath at temperature T (which is composed in experimental
situations by the walls of the cell and capillaries, and the porous
material). One of the cells represents a porous solid sample of
volume VP and the other a reservoir of volume VR. The total
volume is then equal to V = VR+VP. We allow mass exchange
between the cells, whose volumes are kept fixed, so that at
(exchange) equilibrium the chemical potential μR of particles
inside the reservoir is equal to the chemical potential μP of
particles inside the porous solid: μ = μR = μP. We measure
the average amount of particles NP present in the porous solid.
Varying the total number of particles N in small steps, one
changes both the chemical potential of the cells, μ(N), and
the number of adsorbed particles, NP(N). We then monitor
the adsorption isotherm ρP = NP/VP as a function of μ.
Introducing the ratio α = VP/V and the average reservoir
density ρR = NR/VR, where NR = N − NP, one has to
satisfy for each μ the constraint (N/V ) = αρP + (1 − α)ρR

with the condition μ = μR(ρR, T ) = μP(ρP, T ). Taking the
limit α → 0 corresponds to the grand-canonical ensemble
for the adsorbed fluid (with a controlled chemical potential)
whereas taking the limit to 1 corresponds to the canonical
ensemble for the adsorbed fluid (with a controlled number of
adsorbed particles). Between these two extremes, one has a
mixed ensemble, with a reservoir of variable size compared
to the sample, similar to the mesoscopic canonical ensemble

considered by Neimark and co-workers [16]. Low values of
α correspond to a large reservoir with respect to the porous
material size: experimental values are typically lower than
10−2, which corresponds to a volume of the reservoir which
is few hundreds the volume of the sample. More details about
the algorithms used in our two models are given below.

2.2. Atomistic model of a fluid in a single structured pore

An atomistic model of confined fluid was considered because
it allows a realistic description of the various (metastable)
states the system can adopt and, possibly, of the transition
mechanisms at a molecular scale. The chosen system is
a simple atomic fluid (Lennard-Jones like) confined in a
mesoporous substrate [17, 18]. (The model more specifically
corresponds to Argon adsorbed in nanoporous solid carbon
dioxide.) A fully realistic model of the substrate should take
into account the surface roughness, pore morphology (pore-
size distribution), and interconnections between pores. The
number of metastable states would however be too large for a
systematic study. The model was therefore designed to exhibit
only a few metastable states.

The main potential sources for generating metastable
states are nanometer-scale heterogeneities, due to pore-size
distribution, and variations in surface chemistry. In both cases,
the prominent effect on the adsorbed fluid comes from the
modulation of the effective fluid/wall interaction [19, 20]. We
then chose to investigate a cylindrical pore containing few
domains of variable fluid/wall interaction [21]. The diameter
of the nanopore is 8σff (σff is the fluid–fluid Lennard-Jones
diameter). In this way, the smooth-wall approximation can be
applied: the external potential seen by a fluid particle in the
pore is calculated by integrating the fluid–wall (6-12) Lennard-
Jones potential (εsf = 1.277εff, σsf = 1.095σff, where εff

is the fluid–fluid Lennard-Jones interaction parameter) over a
uniform distribution of substrate interacting sites of density
0.8265σ 3

ff. The calculated reduced external potential �∗
cyl(r) =

�cyl(r)/εff in this perfectly cylindrical pore is given in figure 1.
The heterogeneity is introduced by modulating this external
potential along the axial direction z:

�∗
pore(r, z) =

[
1 + a(z) sin

(
4πz

L

)]
�∗

cyl(r) (1)

where a = 0.3 for z < 0 and a = 0.2 for z > 0, and
L = 24σff is the simulation box length. This external potential
exhibits four domains of spatial extension of a few molecular
diameters along the axial direction (see figure 2). Periodic
boundary conditions are applied along the axial direction z.
The interactions are truncated at half the simulation box size
(minimal image convention).

The fluid adsorption properties are calculated by Monte
Carlo simulations. Thermalization of the adsorbed fluid
is performed by particle displacement trials. Chemical
equilibration between the adsorbed fluid and the reservoir is
done by particle exchange trials. The acceptance probabilities
are given by the Metropolis algorithm. The fluid in the
reservoir is assumed to be ideal, which is a good approximation
since the simulations are performed well below the critical
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Figure 1. External potential �∗
cyl(r) for the perfectly cylindrical pore

as a function of radial distance r .

point (very low pressures and densities). As a consequence,
the gas in the reservoir does not need to be treated explicitly,
which speeds up the calculations. In the limit of infinite
reservoir size, one recovers the usual grand-canonical Monte
Carlo algorithm (GCMC). The adsorption/desorption curves
are determined as follows. The initial configuration is the
empty pore. A few molecules are then added in one step to the
system (pore + reservoir). In order to mimic the experimental
situation, the molecules are actually added to the reservoir
cell, which results in an increase in μR, and, accordingly,
to a lack of equilibrium between the pore and its reservoir.
The whole system is then relaxed for a while. Molecules
exchange between the cells, which produces a small flow from
the reservoir to the pore in the first steps. This flow reaches
zero when stationarity is reached (μR = μP). We emphasize
that this matter flow does not correctly describe the mass
transport, since the Monte Carlo algorithm allows transfer of
matter everywhere in the porous substrate. 106 Monte Carlo
trials per particle are then performed to acquire statistics for
computing averaged quantities. This gives the first point of
the isotherm. The subsequent points are obtained according
to the same procedure, i.e. a small increase in the number of
molecules in the reservoir, followed by a relaxation run, and,
finally, by a long run for acquisition. After complete adsorption
has been achieved, the desorption isotherm can be calculated
by decreasing the amount of particles in the reservoir step by
step, as in a real experiment. This algorithm allows us to obtain
the scanning curves embedded within the main hysteresis loop.
Note that for the case of an infinite reservoir, it is the chemical
potential which is increased stepwise instead of the amount of
particles in the reservoir, which is then infinite.

2.3. Coarse-grained model for adsorption in a disordered
porous material

As discussed in previous papers [2, 3, 22], our approach to
fluid adsorption in disordered mesoporous materials is based
on a coarse-grained lattice-gas description which incorporates
the essential physical ingredients of the solid–fluid system.
We consider a three-dimensional BCC-lattice of linear size L

    

Figure 2. External potential �∗
pore(r, z) for the heterogeneous pore as

a function of coordinates r and z.

in which each of the NSP = 2L3 sites may be occupied by
a fluid or by a solid particle (L is measured in units of the
lattice spacing a and we set a ≡ 1; for a lattice, the volume
VP is then simply equal to the number of sites NSP times the
volume of the elementary cell a3 ≡ 1, so that we shall speak
of the volume and number of sites indiscriminately). Multiple
occupancy of a site is forbidden and only nearest-neighbor (nn)
interactions are taken into account. The fluid particles can
equilibrate, as explained below, with a finite-size reservoir at
fixed temperature whereas the solid particles are ‘quenched’
and distributed according to a specific choice of the porous
material structure. For the sake of simplicity, we study a
random matrix with a 75% porosity (i.e. the void fraction of
within the porous material). The relevant correlation length of
the solid is around one lattice spacing (it is a purely random
matrix) so that even the smallest systems studied (with a linear
size L = 25) can correctly describe the collective effects
occurring inside the matrix on a long length scale (such as a
sharp condensation event in the whole pore space).

The starting point of our theoretical analysis is the
following expression of the free-energy functional in the local
mean-field approximation (hereafter this analysis will be called
LMFT):

FP[{ρi}] = kBT
∑

i

[ρi ln ρi + (ηi − ρi ) ln(ηi − ρi )]

− wff

∑
〈i j〉

ρiρ j − wsf

∑
〈i j〉

[ρi (1 − η j ) + ρ j(1 − ηi )] (2)

where ρi is the thermally averaged fluid density at site i and
ηi = 0, 1 is a quenched variable describing the occupation of
the lattice by solid particles (ηi = 0 if the site i is occupied by
the solid and ηi = 1 otherwise); wff and wsf denote the fluid–
fluid and fluid–solid attractive interactions, respectively, and
the double summations run over all distinct pairs of nn sites.

We first start with the grand-canonical situation (α = 0)
where fluid particles can equilibrate with an infinite reservoir
that fixes the chemical potential μ. Minimizing the grand-
potential functional 	P[{ρi}] = FP[{ρi}] − μ

∑
i ρi with

respect to {ρi } at fixed T and μ for a given realization of the
solid yields a set of coupled equations,

ρi = ηi

1 + exp[−β(μ + wff
∑

j/ i ρ j + wsf
∑

j/ i(1 − η j ))] ,
(3)
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where the sums run over the c = 8 nearest neighbors of site
i . By using a simple iterative method to solve these equations,
one finds solutions that are only minima of the grand-potential
surface, i.e. metastable states. For a given realization of the
solid, the adsorption isotherm is obtained by increasing the
chemical potential in small steps δμ. At each subsequent μ,
the converged solution at μ–δμ is used to start the iterations.

What happens in the mixed situation (α �= 0)? The fluid
particles can equilibrate between the solid sample and a finite
reservoir so that their total number N is fixed. The isotherm
is then obtained by increasing N in small steps δN . In this
case, the system tries to minimize its total Helmholtz free-
energy FT[{ρi }, ρR, T ] = FP[{ρi}, T ] + FR[ρR, T ], where FR

is the Helmholtz free-energy of the gas reservoir (FR[ρR, T ] =
VR{kBT [ρR ln ρR + (1 − ρR) ln(1 − ρR)] − wffcρ2

R/2} with VR

the volume of the reservoir, i.e., again up to a3 ≡ 1, the number
of sites of the reservoir), while satisfying the global constraint
N = NP+NR = ∑

i ρi +VRρR. This can be solved in a natural
way by the method of Lagrange multipliers. We consider the
function

	̄T[{ρi }, ρR, λ, T ] = FT[{ρi}, ρR, T ]
+ λ{N −

∑
i

ρi − VRρR}, (4)

where λ is a Lagrange multiplier that has the meaning of the
chemical potential coupled to the densities. Minimizing FT

with the constraint on densities amounts to simultaneously
solving the coupled equations ∂	T

∂ρi
= 0, ∂	T

∂ρR
= 0 and ∂	T

∂λ
= 0

or equivalently

kBT ln

[
ρi

ηi − ρi

]
− λ − wff

∑
j/ i

ρ j

− wsf

∑
j/ i

(1 − η j) = 0, 1 � i � NSP (5)

kBT ln

[
ρR

1 − ρR

]
− λ − wffρR = 0, (6)

N −
∑

i

ρi − VRρR = 0. (7)

One has then to define an iterative scheme that specifies how
the system goes from one converged solution to another as the
total number of particles is slowly changed. The details are
given in the appendix.

We are searching for configurations for the local densities
ρi that are local extrema of the grand-potential functional
	P for the special value of the chemical potential μ = λ.
However, it is not fully guaranteed that the above algorithm
necessarily converges to a local minimum, nor even to an
extremum, since the constraint could in principle stabilize
an unstable state. Therefore, we regularly ascertained that
configurations obtained in the mixed ensemble were stable
in the grand-canonical ensemble, i.e. that they indeed were
metastable states, by starting grand-canonical calculations with
the converged solution at chemical potential λ. In addition, it
must be emphasized that the global constraint is not satisfied
until convergence is reached, in the spirit of the Lagrange
method. It is therefore doubtful that one can attribute any
physical meaning to the intermediate stages of the iterative
process. Recall also that one does not take into account

    

Figure 3. Adsorption/desorption isotherms obtained by GCMC
(α = 0) simulation for various temperatures (symbols). Lines are
guides to the eye. Note the hysteresis present at low enough
temperature.

mass transport: local densities can change everywhere and
instantaneously inside the porous sample.

Moreover, we focus on the adsorption (filling) process.
As shown in previous papers [3, 23], fluid desorption may
crucially depend on the presence of an external surface for
the porous solid: the system then includes a real interface
between the adsorbed fluid and the external vapor, and, during
desorption, the vapor domain may penetrate and drain the
solid from the outer surface (the so-called percolation and
depinning transitions discussed in [23]). These mechanisms
are no longer bulk phenomenon and their, a priori more subtle,
analysis will be carried out elsewhere. We have therefore used
periodic boundary conditions for the sample and the reservoir
(separately). The ratio y = wsf/wff has been fixed to 0.8 so
that the adsorption isotherms exhibit the interesting range of
phenomena as the temperature changes (see [3]).

3. Results on reservoir-size dependence for the
atomistic model

3.1. Grand-canonical isotherms

We first focus on the adsorption/desorption isotherms obtained
in the limit of infinite reservoir size (α = 0), i.e. the GCMC
data. The results are given in figure 3 for various temperatures.
As can be seen, the highest temperature isotherm (reduced
temperature T ∗ = kBT/εff = 1.0) is perfectly reversible,
i.e. the adsorption and desorption curves are superimposed.
On the other hand, for lower temperatures, the adsorption and
desorption curves differ and exhibit hysteresis with vertical
steps. We emphasize that the vertical lines are guides to the
eye and do not correspond to GCMC data. The isotherm jumps
in one step, and cannot be stabilized in between.

Quite noticeably, the simulation points may be grouped
into branches. For instance, for a reduced temperature of 0.9,
three branches are present: the gas-like branch (with a fluid
layer adsorbed at the wall, the rest of the pore being filled
with gas), which exists down to very low μ; the liquid-like
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branch (pore filled by dense fluid) at high μ; and a branch of
intermediate density which exists only for a limited range of μ.
We have found that adsorption and desorption are reversible
along any given branch. These branches are associated to
deep local minima in the free-energy landscape describing the
system (the grand-potential). The energetic barriers separating
these minima are generally large compared to the thermal
fluctuations sampled by the Monte Carlo algorithm: the system
then remains trapped in these local minima, which explains
the reversibility of adsorption/desorption along the branches.
However, for some particular values of μ the barriers become
sufficiently small, allowing thermal fluctuations to make the
system jump into an adjacent local minimum. These values
define the limit of stability of the branches (in the grand-
canonical ensemble). The vertical lines in figure 3 indicate the
new local minimum (branch) reached by the system. Note that
the μ-range of the various branches overlap, which means that
for some μ, the system may be stabilized in GCMC at various
degrees of pore filling ρP. This is the main origin of hysteresis.
As can be seen, the lower the temperature, the larger the μ-
range of existence of the branches, and the wider the hysteresis.
The number of branches increases for decreasing temperature,
at least down to T ∗ = 0.8 (figure 3). We shall show later
that this is actually still true down to T ∗ = 0.6 if one takes
into account metastable states that are hidden in the GCMC.
For T ∗ = 0.9, the three branches are visited during both
adsorption and desorption. They belong to the main adsorption
and desorption curves. For T ∗ = 0.8, five metastable states
belong to the main adsorption curve, and three to the main
desorption curve. The branch of intermediate density reached
during desorption (second branch, ρ∗

P = ρPσ
3
ff ∼ 0.4)

looks like a continuation of the third branch visited during
adsorption (ρ∗

P ∼ 0.4). This point was checked by showing the
reversibility of the complete branch by GCMC (by increasing
and decreasing μ). The total number of metastable states is
then five, and their range of existence was determined in a
systematic way by μ-variations. The results are shown in
figure 4. Here again, lines are guides to the eye, and the
vertical lines show the new metastable state reached by the
system beyond the stability limit. The case T ∗ = 0.6 deserves
special attention. The procedure that consists in following
simple ascending and descending μ-paths does not allow the
two branches with reduced densities around 0.3 and 0.45 to be
reached. These states were obtained from the corresponding
states at higher temperature T ∗ = 0.8 by following a particular
(μ, T ) path along which their stability is preserved. This path
essentially consists of slowly decreasing the temperature and
increasing the chemical potential in order to keep the average
number of particles roughly constant. When T ∗ = 0.6 has
been reached, the μ-range stability can be determined for both
states (see figure 4). It is possible that more metastable states
actually exist, but the procedures previously explained did not
allow more than five branches in our simple system to be found.

3.2. Metastable states

Figure 5 displays an enlargement of the lowest temperature
(T ∗ = 0.6) GCMC results, without the vertical lines.

    

Figure 4. All stable and metastable states obtained by GCMC
(α = 0) simulation for various temperatures (symbols). Lines are
guides to the eye indicating the path followed by the system beyond
the stability limits of each metastable state. Adsorption/desorption
isotherms found in figure 3 are the envelopes of all metastable
branches.

As previously mentioned, the simulation points group into
reversible branches (solid lines are guides to the eye) which
correspond to local minima in the free-energy landscape. We
now give a molecular-level description of these local minima.
The lowest density branch corresponds to a gas-like fluid filling
the pore with adsorbed molecules at the wall. The highest
density branch corresponds to a liquid-like fluid saturating the
pore. The three other states are stabilized by the chemical
corrugation. Visual inspection of the molecular configurations
(see lower panel of figure 5) shows that the three branches
correspond respectively to: one liquid-like bridge in the most
attractive domain of the pore; two liquid-like bridges in the
two attractive regions of the pore; one single gas-like ‘bubble’
in the least attractive domain of the pore.

3.3. Mixed-ensemble results

We now focus on the adsorption/desorption results obtained
for a finite-size reservoir. Two ratios VR/VP = 500 and
2000 have been considered (α 	 2 × 10−3 and 5 × 10−4).
The procedure previously used to obtain all metastable states
will be applied here in its simplest form, i.e. isothermal μ-
paths, because it corresponds to what is actually feasible for
realistic mesoporous substrates and in real experiments (one
essentially measures the main adsorption/desorption hysteresis
and scanning curves). The results for the main hysteresis loops
are given in figure 6, where the grand-canonical case (α = 0)
has also been plotted for comparison. In all cases the symbols
are the simulation data, and the colored (thick) lines are guides
to the eye that connect the simulation points in the same order
as they were obtained by slowly increasing (adsorption) or
decreasing (desorption) the total number of particles in the
system. The thin (black) lines are the five branches previously
obtained by extensive GCMC study (figure 5). In the limit
of infinite reservoir size (α = 0), starting from the empty
system and gradually increasing μ results in the continuous
filling of the system up to μ∗ = μ/εff = −9.43 where

6



J. Phys.: Condens. Matter 21 (2009) 155102 E Kierlik et al

Figure 5. Enlargement of the low temperature metastable states
found by GCMC (α = 0). Solid lines indicate reversible branches.
The lower panel shows, at μ∗ = −9.52 (dotted line), one typical
molecular configuration, for each of the five metastable states
sketched in the upper panel.

the system jumps into the second local minimum. Increasing
the chemical potential further makes the system jump directly
to the fifth local minimum. Upon desorption, the system
remains in the saturated state for a while (hysteresis) and finally
jumps (for μ∗ = −9.94) directly into the first local minimum
(gas-like branch) without visiting any intermediate state. The
vertical lines represent the constraint imposed by the reservoir
(μ∗ = cte) but not necessarily the path actually followed by
the system during the transition (transient phenomenon are not
properly described by the Monte Carlo algorithm).

Figure 6. Adsorption/desorption isotherms for various values of the
relative size of the gas reservoir: α = 0 (GCMC), α ∼ 5 × 10−4 and
2 × 10−3, where α = VP/(VP + VR).

In the case of a finite reservoir, it is the total number of
particles in the system plus its reservoir which is increased
by small steps as in a real experiment. As can be seen from
figure 6, the amount of adsorbed fluid initially increases along
the gas-like branch in a continuous manner until it reaches its
stability limit. (Note that this limit occurs at slightly larger μ

for a smaller reservoir: μ∗ = −9.43 for α = 0, μ∗ = −9.41
for α 	 5 × 10−4 and μ∗ = −9.36 for α 	 2 × 10−3.)
At this stability limit, a small addition of extra molecules in
the reservoir destabilizes the adsorbed fluid which then jumps
into the second state. During the transition, particles leave
the reservoir and adsorb into the pore in the most attractive
region to form a liquid-like bridge (second metastable state),
which results in a decrease of the chemical potential. Here
again, our algorithm is not meant to describe this transition.
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Figure 7. Circles: GCMC results for T ∗ = 0.60. Lines are guides to
the eye. The arrows indicate the jump made by the representative
point of the adsorbed fluid for various reservoir sizes, after
destabilization of the initial point A by a small increase in the total
number of particles in the system. The curved arrow indicates
increasing values of the relative reservoir size: α = 0 (GCMC),
2.2×10−4, 2.5×10−4, 5.0×10−4, 1.0×10−3, 2.0×10−3, 2.4×10−2.

The path actually followed by the system is not known. The
(curved) line shown in the figure corresponds to the constraint
of conservation of the total number of particles in the system
plus its reservoir. After equilibration, the system reaches the
second branch. A further increase in the total number of
particles makes the system follow this branch until it reaches a
new stability limit. (As previously, this limit slightly increases
for a finite reservoir: μ∗ = −9.27 for α = 0, μ∗ = −9.23
for α 	 5 × 10−4 and μ∗ = −9.24 for α 	 2 × 10−3.) The
system then jumps onto the fifth branch for α = 0, onto the
fourth branch for α 	 5 × 10−4, and onto the third branch for
α 	 2 × 10−3.

The above results illustrate one of the main effects of
the reservoir: the system does not necessarily visit the same
metastable states as one changes the size of its reservoir. From
figure 6, this effect may be tentatively interpreted as follows:
the reservoir imposes a constraint on the relation between the
chemical potential and the amount adsorbed, materialized by
the vertical or inclined curves. After a branch stability limit
has been reached, the system approximately follows this line
of constraint during the transition, and finally meets a new
branch at a location that depends on the ratio between the
reservoir and the system size. To illustrate this point, starting
from the highest μ GCMC point of the second branch (limit of
stability), we have determined the new metastable state reached
by the system after a small increase in the total number of
molecules for various reservoir sizes. The results are given
in figure 7. This picture is however somewhat oversimplified
and does not apply in all situations since it does not take into
account the complexity of the underlying free-energy (grand-
potential) landscape that determines which path is actually
followed by the system (being in configurational space, the
free-energy landscape is an object of very high dimension).
At a molecular level, this means that complex nucleation and
fluid adsorption processes determine the path actually followed

Figure 8. Possible mechanisms for the evolution of the fluid
configurations inside the pore starting from the fourth metastable
branch. Upper mechanism: bubble nucleation; the system reaches the
third metastable branch. Lower mechanism: meniscus recession; the
system reaches the second metastable branch (see the text).

by the system. One of the consequences is that the system
does not necessarily stop on the first branch crossed by the
constraint line. This is illustrated in our simple system for
α 	 2 × 10−3 during desorption from the fourth branch: as
can be seen, the constraint line crosses the third metastable
branch, but the system avoids this state and actually reaches
the second branch. In the grand-potential landscape picture,
this means that, starting from the fourth local minimum, and
following the steepest slope, the system has not crossed the
basin of attraction associated to the third minimum and has
followed its way until being finally trapped by the basin
associated to the second local minimum. In the molecular-level
description, the fourth branch corresponds to a large liquid
domain with a single gas-like ‘bubble’ in the least attractive
region. Upon desorption, the system would have to nucleate a
bubble in between the attractive regions in order to reach the
third branch corresponding to two liquid-like bridges in the
attractive regions (see figure 8, upper path). This nucleation
barrier is probably too high, and it is more favorable for the
system to desorb by recession of the liquid bridge in the less
attractive region until it is left with one single liquid bridge
in the most attractive region corresponding to the second state
(see figure 8, lower path).

As for the grand-canonical case, it is possible to perform
a systematic search for all possible metastable states in the
system in contact with a finite reservoir. The five branches
already described are found in all cases. Figure 9 shows
the superimposition of all simulation points (stable over long
runs) obtained for the various ratios between the reservoir and
system sizes already presented. As can be seen, the points
group onto branches corresponding to the five metastable states
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Figure 9. Metastable states of the adsorbed fluid obtained for all the
different sizes of the reservoir studied here (shown with the different
colors used in figure 6).

found in the system. It should however be reminded that
the limits of stability of the branches slightly vary with the
reservoir size. This may be related to the fact that transitions
proceed via energetic barriers and that the amplitude of the
fluctuations allowed by the reservoir depends on its size. To
summarize the results, reducing the size of the reservoir allows
one to explore metastable states upon adsorption/desorption
that are not accessible in the grand-canonical situation. It is
also found that the number of metastable states visited by the
fluid increases with decreasing reservoir size.

4. Results for the coarse-grained model

4.1. Grand-canonical isotherms

Typical results for adsorption isotherms obtained at various
temperatures in the grand-canonical ensemble are shown in
figure 10. When the temperature decreases, the isotherm shape
changes from smooth to steep. As discussed in previous
papers [23], this corresponds to a true out-of-equilibrium
phase transition, the so-called ‘avalanche transition’ [7], with
the sudden appearance of a macroscopic, connected liquid
domain in the whole porous sample. A previous extensive
scaling study [23] showed that there exists a critical value
of the temperature for which the isotherm changes from
continuous to discontinuous in the thermodynamic limit. At
higher temperature, isotherms look gradual but at reduced
temperatures T ∗ = 1.40, they consist of little steps of varying
sizes (see inset in figure 11).

The above results are related to the characteristics of the
grand-potential landscape. At low temperatures, this multi-
dimensional landscape (recall that it is a function of the local
fluid densities, here with NSP ∼ 104–106) is characterized
by a large number of local minima, the metastable states in
which the system may be trapped. Since thermally activated
processes are neglected in the LMFT (an approximation that,
as already discussed, finds its justification in the experimental
reproducibility of the adsorption isotherms on the timescale of

Figure 10. Hysteresis loops around the ‘capillary condensation’
calculated by LMFT in the grand-canonical ensemble (α = 0) (for a
sample of linear size L = 100) as a function of the temperature:
T ∗ = 1.40 (full blue line), T ∗ = 1.10 (dotted red line), T ∗ = 0.80
(dashed black line). For the last two temperatures, only part of the
desorption branch is shown.

Figure 11. Grand-canonical (α = 0) descending scanning curves
calculated by LMFT in a sample of linear size L = 50 at T ∗ = 1.40.
A close-up of the adsorption isotherm is shown in the inset.

most experiments), the evolution of the system is only due to a
variation of the external driving (here the chemical potential).
As μ varies, the system either follows the minimum in which it
is trapped as this minimum deforms gradually (the flat portions
in the insert of figure 11), or it falls instantaneously into
another minimum when the former reaches its stability limit.
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Figure 12. Canonical (symbols, appear as thick lines, α = 1) and grand-canonical (thin lines, α = 0) adsorption isotherms calculated by
LMFT in a sample of linear size L = 100 at T ∗ = 1.10 (right) and T ∗ = 0.80 (left).

This later move is a discontinuous and irreversible process,
an avalanche, which is at the origin of the history-dependent
behavior of the system, e.g. the hysteresis. The avalanche
corresponds to a collective condensation event inside the
porous sample that manifests itself by a jump in the adsorption
isotherm [1]. The size of the avalanche may be macroscopic
as for T ∗ = 0.8, and the adsorption isotherm is discontinuous
in the thermodynamic limit; or it may be microscopic as for
T ∗ = 1.40, and the adsorption isotherm remains smooth in the
thermodynamic limit. (More calculations should be necessary
to conclude what happens at T ∗ = 1.10.) The hysteresis
loop encloses all the metastable states of the system: this is
illustrated in figure 11 by the scanning curves obtained by
performing incomplete filling of the matrix and then decreasing
the chemical potential to drain the adsorbed fluid. Of course,
the number of metastable states is very large, expected to
be exponential in the system size as in disordered magnetic
systems (see e.g. [24]), and only few of them are revealed with
this simple procedure.

4.2. Canonical and mixed-ensemble isotherms

What happens when the porous sample is coupled to a finite
reservoir? First, we begin with a vanishingly small reservoir,
which is the canonical situation where one controls the number
of adsorbed particles. The main results are summarized
in figure 12, where we compare the adsorption isotherms
obtained with the ‘μ-driven’ (grand-canonical) and ‘ρP-driven’
(canonical) procedures. The behavior is quite different
in the low and the high temperature regimes, respectively
characterized by the absence and the presence of a macroscopic
μ-driven avalanche. At the highest temperature studied (T ∗ =
1.80, not shown in the figure), there exists only one stable
state, the equilibrium one, and controlling either the adsorbed

density or the chemical potential yields the same result. This
is also true for all temperatures at very low adsorbed densities
(not shown in the figure). At lower temperatures, avalanches
appear in the grand-canonical isotherm. Collective localized
events, which we define as ‘avalanches’ irrespective of the
control variable, also show up in the canonical isotherm in
the form of small jumps in the chemical potential toward a
lower value: with the disappearance of the initial minimum, the
system has to find another metastable state with the required
adsorbed density; as this state cannot be found at a higher
value of the chemical potential since the grand-canonical
adsorption/desorption isotherms have been shown to represent
the extremal curves that encompass all the metastable states of
the system [3], the chemical potential must decrease. (Note
that in a grand-canonical setting ‘avalanches’ appear as jumps
in the adsorbed density ρP at constant chemical potential μ,
whereas in a canonical one they appear as jumps in μ at
constant ρP.) When a metastable state is found and further fluid
is added, the system smoothly follows this state (see the quasi-
linear portions in figure 13) until it reaches the corresponding
stability limit. Then there is a new jump in the chemical
potential to a smaller value, and the evolution proceeds in this
way until the porous sample is completely filled with liquid.
The contrast between μ-driven and ρP-driven isotherms that is
illustrated in figure 12 is very reminiscent of what was found in
ferromagnetic systems when comparing magnetization-driven
and magnetic-field-driven protocols [12]. As in the latter case,
the canonical (ρP-driven) isotherms are closely related to the
distribution of metastable states inside the (grand-canonical)
hysteresis loops.

We now discuss in more detail the canonical (ρP-driven)
isotherms. At T ∗ = 1.40 with a sample of linear size L =
100, the jumps in μ(ρP) are very small and one needs to
zoom in on the isotherm to see the small differences between
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Figure 13. A close-up of the canonical (symbols, appear as dotted
lines, α = 1) and grand-canonical (thick lines, α = 0) adsorption
isotherms obtained by LMFT at T ∗ = 1.40 for different linear sizes
of the system.

the canonical and grand-canonical protocols, as illustrated in
figure 13. This smallness is related to the presence of many
metastable states in the close vicinity of the grand-canonical
isotherm. Since both the grand-canonical and the canonical
avalanches remain of microscopic size, we expect that the
small jumps in either ρP or μ become infinitesimally small
in the thermodynamic limit. This is indeed what is observed
in figure 13 where isotherms obtained for different system
sizes are compared. Therefore, we predict that the canonical

and grand-canonical curves should become identical in the
thermodynamic limit.

A similar behavior is observed at T ∗ = 1.10, as illustrated
in figure 14. However, the jumps in ρP are larger than at T ∗ =
1.40 and are clearly associated with a much more fluctuating
chemical potential μ(ρP): each jump in ρP generates a re-
entrant behavior in μ(ρP). It is difficult to conclude how the
isotherm will evolve in the thermodynamic limit: as the size of
the system increases (see figure 14), there are more and more
intermediate points in the steepest part of the grand-canonical
isotherm and, at the same time, the canonical isotherm is less
and less fluctuating. The temperature T ∗ = 1.10 is probably
barely above the critical temperature of the (grand-canonical)
avalanche transition and we expect that both the canonical and
the grand-canonical isotherms would become continuous and
would coincide in the thermodynamic limit.

On the other hand, T ∗ = 0.80 is undoubtedly below the
critical temperature of the avalanche transition: all samples
studied, whatever their size, display a large jump in their
grand-canonical isotherms (see figure 15). (In a previous
work on a random matrix [23], we concluded through an
extensive finite-size study that a macroscopic jump exists in
the thermodynamic limit at T ∗ = 0.8 for y = 0.9; since
the value y = 0.8 used in this paper corresponds to a weaker
disorder than y = 0.9, this is necessarily true here as well.) As
shown in figure 15, the canonical curves show a pronounced
re-entrant behavior, with a large difference with the grand-
canonical ones: a whole region void of metastable states then
appears. There are always finite-size effects, which affect
both the canonical and the grand-canonical isotherms. In
the latter case, the rare events that trigger the macroscopic
avalanches are very sensitive to details about the structure of
the matrix, and the corresponding chemical potentials vary
strongly with the system size at small L. We have nonetheless

Figure 14. Canonical (symbols, appear as thick lines, α = 1) and grand-canonical (thin lines, α = 0) adsorption isotherms obtained by LMFT
at T ∗ = 1.10 for samples of different linear sizes: L = 25 (left), L = 50 (middle), L = 100 (right).
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Figure 15. Canonical (symbols, appear as thick lines, α = 1) and grand-canonical (thin lines, α = 0) adsorption isotherms obtained by LMFT
at T ∗ = 0.80 for samples of different linear sizes: L = 25 (left), L = 50 (middle), L = 100 (right).

checked, by performing grand-canonical isotherms on very
large systems of linear size L = 200, that the position of
the jump stays very close to that found in the isotherm for
L = 100 (displayed in figure 15), which indicates that one is
close to the thermodynamic limit. For the canonical isotherms,
the chemical potentials fluctuate less and less as the size of the
system grows (especially at the end of the adsorption process,
when the porous sample is nearly filled with liquid) and the
overall location of the isotherm in the ρP–μ plane does not
shift significantly with L.

To discuss the fluctuations of the chemical potential with
the density in the canonical protocol, we have performed
finite-size studies of the first moments of their distribution,
after averaging over disorder (i.e. porous sample) realizations.
More precisely, we compute the mean μ(ρP) (hereafter an
overbar denotes the average over disorder) and the variance

�μ(ρP) = μ(ρP)2 − μ(ρP)
2

for three sizes of the system.
As explained in [12], the standard argument concerning self-
averaging quantities, whose value in a macroscopic sample is
equal to the average over all disorder realizations, cannot be
applied: as a consequence, one cannot be sure that μ(ρP) is a
self-averaging quantity. To delve more into its behavior, it is
interesting to investigate the dependence on system size of the
standard deviation σμ(ρP) = √

�μ(ρP). The result is shown in
figure 16, where σμ(ρP) is plotted as a function of the adsorbed
density (computed in bins of width 0.01). Except at low and
high density, the standard deviation remains nearly constant
with ρP (typically, between ρP = 0.2 and 0.6). It decreases
with L but quite slowly: we find that in the region between
ρP = 0.2 and 0.6, �μ(L) = σμ(L)2 ∼ L−γ with a finite-size
scaling exponent γ around 1.4, i.e. significantly smaller than 3.
This indicates that μ(ρP) is self-averaging, but only weakly so.

As in [12], we have checked that the corresponding histograms
are roughly Gaussian (see figure 16). Although the situation
with respect to self-averaging remains somewhat unclear as
far as the whole isotherm is concerned [12], it is nonetheless
instructive to study the mean μ(ρP) as a function of system
size. This is displayed in figure 17, where one can see that the
μ(ρP)-isotherms vary significantly with the size of the system,
becoming steeper as L increases. We cannot conclude whether
or not the isotherm becomes vertical in the thermodynamic
limit, but the data suggests that it will be distinct in this limit
from the grand-canonical isotherm: the μ(ρP)-isotherms for all
studied system sizes intersect near the point μ∗ = −4.47 and
ρP = 0.3, at a significantly lower chemical potential than those
found for the grand-canonical jumps (μ∗ ∼ −4.43–4.44) for
L = 200 (see figure 17).

We now comment on the two types of behavior found
along the ρP-driven adsorption isotherm. For increasing
adsorbed density ρP, the chemical potential may either increase
continuously or decrease by discontinuous jumps. In the
former case, there are only slight swellings of the liquid
domain, with the liquid–gas interfaces retaining the same
shapes locally and all the ρi s increasing. In the latter case, we
find that each jump corresponds to a single condensation event,
a ρP-driven ‘avalanche’, in which all sites of a compact region
become liquid. This is illustrated in figure 18. Considering
the two consecutive configurations with average densities ρP

and ρP + �ρP (before and after the jump), sites are considered
as turning liquid (respectively, gas) when the variation of
the local fluid density is larger than 0.3 (respectively, lower
than −0.3) and are shown in red (respectively, gray) in the
figure. The size of the condensed region varies for each
jump along the isotherm, but the number of particles involved
in the local condensation can go far beyond the controlled
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Figure 16. Left: standard deviations σμ of the chemical potentials as a function of the adsorbed density ρP at T ∗ = 0.80 for different system
sizes: L = 25 (black, top), L = 50 (red, middle), L = 100 (blue, bottom). Lines show averaged values. Right: histograms of μ(ρP) for
different values of ρP (ρP = 0.6 in red/left, ρP = 0.2 in black/right) and different system sizes (L = 25: top, L = 50: middle, L = 100:
bottom).

Figure 17. Average canonical (α = 1) adsorption isotherms μ(ρP)
calculated by LMFT at T ∗ = 0.80 for different system sizes; from
left to right in the upper part of the plot: L = 25 (black), L = 50
(red), L = 100 (blue). The corresponding numbers of realizations
are 256, 64 and 8, respectively. Typical grand-canonical (α = 0)
adsorption isotherms for L = 200 samples are also shown (dashed
curves).

increment VP�ρP: in figure 18, the condensation event (in
red) corresponds to a local increase in the number of particles
that is 110 times larger than the initial increment. Therefore,

Figure 18. Condensation and evaporation events at T ∗ = 0.80
between ρP = 0.3962 and ρP = 0.3963 in the ρP-driven protocol
(α = 1). Sites turning liquid are shown in red and those turning gas
in blue. The chemical potential μ∗ has decreased from −4.465 to
−4.515.

others regions of the porous sample must be drained: as shown
in the figure, the most important evaporation events (in blue)
remain smaller and less compact than the condensation event
and appear at random throughout the material. (Whereas
the definition of ‘turning liquid’ is well characterized since
the histogram of positive variations of the local density is
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Figure 19. Adsorption isotherms at T ∗ = 0.80 predicted by LMFT for different relative sizes of the reservoir for a sample of linear size
L = 50. In the four panels, the canonical isotherm is shown in light gray (symbols, appear as lines) and the grand-canonical isotherm as a
dashed curve. Top left: α = 10−2, top right: α = 2. × 10−3, bottom left: α = 10−3, bottom right: α = 5. × 10−4, where α = VP/(VP + VR).
Note that both the slope and the length of the inclined segments that represent jumps in the μ–ρP plane (the lines are therefore a guide to the
eye) increase as α decreases: the slope is directly related to α (compare with figures 6 and 7).

always peaked at a value close to 1, this is much less so
for its counterpart ‘turning gas’: the histogram of negative
variations is continuously decreasing between 0 and −1, so
that the decrease of the average density that balances the
condensation event mostly comes from small but widespread
local variations.) This suggests the following interpretation:
adding a small amount of fluid to the sample may trigger a
condensation ‘avalanche’ whose size is larger than the added
fluid amount; a decrease of the chemical potential allows a
slight draining of the rest of the sample and provides the
required amount of fluid to ‘feed’ the avalanche.

Finally, figure 19 presents our results in the mixed
ensemble for different sizes of the reservoir. As the size
increases, the μ(ρP)-isotherms exhibit flat segments with
decreasing length and jumps in the μ–ρP plane that are more
and more pronounced. This behavior is similar, albeit in more
complex systems and in the presence of a much larger number
of metastable states, to that found in the atomistic model and
illustrated in figure 6. When the volume of the reservoir
becomes 2000 times greater than the volume of the porous
material, the isotherm displays a unique jump between the
grand-canonical low density branch and the grand-canonical
high density branch, but it still comes with a decrease of the
chemical potential (lower right panel of figure 19). For larger

reservoir sizes, the jump gets closer and closer to the grand-
canonical isotherm. Convergence however is rather slow. On
the other hand, for the smallest reservoir sizes (a reservoir
volume 500 times the volume of the porous material or less:
see the two upper panels of figure 19), the isotherms tend to
superimpose on the canonical isotherm. It can be however
noticed that the explored metastable states are not necessarily
identical. As explained in section 3, one indeed has to be very
careful with the representation of states in the μ–ρP plane,
which is only a projection from the highly multi-dimensional
configurational space: it is possible to cross branches as the
mixed-ensemble constraint allows the system to explore other
areas of the underlying free-energy landscape.

5. Conclusion

In this paper, we have presented a study of the out-
of-equilibrium, hysteretic response of a fluid adsorbed in
inhomogeneous porous materials when one couples the porous
sample with a finite-size reservoir and controls the total number
of particles. Varying the relative size of the sample and
the reservoir allows one to interpolate between a canonical
situation with a controlled adsorbed density and a grand-
canonical situation with a controlled chemical potential. We
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have considered both an atomistic model of a fluid in simple,
yet structured pore and a coarse-grained model for adsorption
in a disordered mesoporous material. The adsorption isotherms
have been computed by molecular Monte Carlo simulation
in the former case and by a density functional approach in a
local mean-field approximation in the latter case. The Monte
Carlo simulations give us a clear picture of what occurs at
the molecular scale in a small and weakly disordered system,
whereas the density functional approach provides insights at
the mesoscopic scale for a fully disordered system. In both
cases, we have found metastable states that appear as branches
of finite extent in the μ–ρP plane. The metastable states
correspond to inhomogeneous configurations of the fluid and
the number of branches increases rapidly with the complexity
of the material. It is worth stressing two points: first,
these states are not unstable, i.e. not purely stabilized by
the constraint on the total number of particles [25]; second,
metastability is induced by the intrinsic inhomogeneity of
the solid. Accordingly, the picture of metastability in such
systems is quite different than that encountered in mean-field-
like descriptions of homogeneous (bulk) systems undergoing
first-order transitions.

We have shown that the way the system evolves
between these metastable states may depend on the protocol,
controlled here by the relative size of the reservoir. In
particular, our results suggest that a discontinuity in the
grand-canonical adsorption isotherm (an out-of-equilibrium
‘avalanche transition’) is associated with the absence of
metastable states in a whole region of the μ–ρP plane and that
the corresponding canonical adsorption isotherm (and, more
generally, isotherms performed with a small enough reservoir
size) differs from the grand-canonical one and displays a
reentrance, even in the thermodynamic limit.

What is the relevance of our results for experimental
set-ups? For illustration, we consider two examples. In
order to determine the adsorption isotherm with the volumetric
method, using for instance nitrogen, known amounts of fluid
are admitted stepwise in the sample cell. The amount of
adsorbed fluid is the difference between the admitted gas
and the amount of gas that fills the ‘dead volume’, i.e. the
free space in the sample cell including connections: this is
equivalent to the procedure discussed in this paper, with the
dead volume playing the role of a finite-size reservoir for the
sample. The amount of gas in this reservoir is calculated
from the fluid equation of state and from measurements of
the pressure, the temperature and the dead volume. In an
experiment with a sample size of 20 mm3, a cell of a few cm3

could be used. In such a situation, the ratio of volumes (porous
medium versus total) is around 10−2 and the ratio of adsorbed
amount on the total amount around 1. On the other hand, to
measure helium adsorption in aerogels, Cross et al [26] use a
different experimental set-up in which the adsorbed amount is
controlled through the temperature of a helium gas reservoir
connected to the experimental cell. The total amount of helium
is fixed, but varying the temperature of the reservoir transfers
atoms from the reservoir to the cell, or conversely. In recent
experiments [10], with temperatures ranging from 4 to 5 K, the
adsorbed amount at saturation corresponds to around 20% of
the total amount.

In both above examples, the ratio between the adsorbed
amount and the total amount of fluid is fully in the range of
the parameters of our study. However, in most experiments in
disordered porous materials the adsorption isotherms display
hysteresis but are smooth and continuous: in consequence, as
predicted by the present study, no effects of the reservoir size
are expected in this case. We have shown here that for such
effects to be observable, the temperature should be low enough
for the grand-canonical adsorption isotherm to exhibit a true
discontinuity and not only a very steep variation. It is unlikely
that this true discontinuity could be observed in disordered
porous materials such as Vycor or xerogels: the disorder and
the confinement are too strong and prevent the appearance
of the avalanche transition at temperatures higher than the
triple point. The case of helium adsorption in aerogels is
however more promising, since at low temperature (below 4 K)
jumps have been predicted [27, 28] and may have already been
observed by experiment [8]. It would therefore be interesting,
in this case, to perform controlled experiments for different
relative sizes of the reservoir to see if the predicted reentrance
of the isotherm as one moves away from the grand-canonical
situation is indeed encountered, as observed in hysteretic
martensitic transformations [11].
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Appendix A. DFT algorithms

As a starting point, it is convenient to rewrite the condition of
minimization of the grand-potential, ∂	T

∂ρi
= 0, as

exp(−βλ)ρi = (ηi − ρi ) exp
[
β
(
wff

∑
j/ i

ρ j

+ wsf

∑
j/ i

(1 − η j)
)]

(A.1)

and sum over i so as to express λ as a function of the densities

exp(−βλ)

=
∑

i{(ηi − ρi ) exp[β(wff
∑

j/ i ρ j + wsf
∑

j/ i(1 − η j ))]}∑
i ρi

.

(A.2)

Our algorithm is then the following: changing the total density
ρ by a small step �ρ, i.e. ρnew = ρold + �ρ, one first
supposes that the supplementary amount is adsorbed in the
porous material: ρnew

P = ρold
P + �ρP. One then computes the

new Lagrange parameter from

exp(−βλnew) =∑
i {(ηi − ρold

i ) exp[β(wff
∑

j/ i ρ
old
j + wsf

∑
j/ i(1 − η j ))]}

VPρ
new
P

(A.3)
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(with the old local densities) and the new local densities from

ρnew
i =

ηi

1 + exp[−β(λnew + wff
∑

j/ i ρ
old
j + wsf

∑
j/ i(1 − η j ))] .

(A.4)

The new reservoir density ρnew
R is obtained by inverting

λnew = kBT ln

[
ρnew

R

1 − ρnew
R

]
− wffρ

new
R . (A.5)

One then checks if the constraint is satisfied, i.e. if ρ =
α

∑
i ρnew

i
VP

+ (1 − α)ρnew
R within a given precision and, if not,

one iterates using �ρ = 1
α
[ρ − α

∑
i ρnew

i
VP

− (1 − α)ρnew
R ] until

convergence is reached.
In practice, to improve the convergence of the iteration

procedure, we use a mixing scheme, retaining a part of the
previous iteration for the subsequent iteration. It appears
that the configurations visited do not depend on the mixing
parameter when the convergence criteria are strong enough.

Note that other equivalent algorithms can be devised as
well and, interestingly, the output of the calculation appears to
be quite robust to the choice of the algorithm. For instance,
changing equation (A.2) to the equivalent equation,

exp(−βλ)

=
∑

i(ηi − ρi )∑
i{ρi exp[β(wff

∑
j/ i ρ j + wsf

∑
j/ i(1 − η j ))]} , (A.6)

yields the same trajectory for the converged states even if
the intermediate stages and the speed of convergence greatly
differ. One can also add the increments �ρ in the reservoir
as in the molecular simulation: ρnew

R = ρold
R + �ρ; then,

one computes the new Lagrange multiplier with equation (A.5)
and the new local densities with equation (A.4), checks the
constraint, and iterates using �ρ = 1

1−α
[ρ − α

∑
i ρnew

i
VP

− (1 −
α)ρnew

R ]. This does not change the isotherm when the evolution
is adiabatic. This algorithm seems simpler and possibly closer
to the experimental protocol. However, it becomes problematic
in the limit of the canonical ensemble (α = 1). Therefore, we
have preferred the first algorithm described above.

Our calculations were performed with samples of linear
sizes varying from L = 25 to 100 and convergence was
assumed when for the nth iteration, max{i} |ρ(n−1)

i − ρ
(n)
i | < ε

and |ρ(n−1) −
∑

i ρ
(n)
i

VP
| < ε, with ε = 10−6 for L = 25 and

ε = 10−8 for L = 50 and 100. In addition, the steps �ρ in
ρ were taken as small as 10−5 so that most of the avalanches
could be resolved (see [1] for more details about identification
of avalanches). Further tightening the convergence criteria
(e.g. with ε = 10−9 for L = 50) does not change the path
followed by the system: the adiabatic regime has been reached.
However, for the smallest system studied, with linear size
L = 25, reducing �ρ too much could prevent convergence
as the system is not able to find a metastable state with the
required density.

Appendix B. Notations and symbol definitions

N, V , ρ = N
V Number of particles, volume and average

density of the whole system
(sample + reservoir)

NP, VP, ρP = NP
VP

Number of adsorbed particles, sample
volume and average adsorbed density

NR, VR, ρR = NR
VR

Number of particles, volume and average
density of the reservoir

α = VP
VP+VR

Relative volume of the sample
μ∗, T ∗ Chemical potential and temperature in

units of the fluid–fluid interactions
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[24] Pérez-Reche F J, Rosinberg M-L and Tarjus G 2008 Phys. Rev.

B 77 064422
[25] Everett D 1998 Colloids Surf. A 141 279
[26] Cross B, Puech L and Wolf P E 2007 J. Low Temp. Phys.

148 903
[27] Detcheverry F, Kierlik E, Rosinberg M-L and Tarjus G 2004

Physica B 343 303
[28] Detcheverry F, Kierlik E, Rosinberg M-L and Tarjus G 2005

Adsorption 11 115

16

http://dx.doi.org/10.1103/PhysRevE.72.051506
http://dx.doi.org/10.1103/PhysRevLett.87.055701
http://dx.doi.org/10.1088/0953-8984/14/40/319
http://dx.doi.org/10.1103/PhysRevE.67.041207
http://dx.doi.org/10.1103/PhysRevLett.70.3347
http://dx.doi.org/10.1103/PhysRevLett.82.121
http://dx.doi.org/10.1103/PhysRevB.72.184202
http://dx.doi.org/10.1209/0295-5075/82/56003
http://dx.doi.org/10.1103/PhysRevB.76.064105
http://dx.doi.org/10.1103/PhysRevB.74.224403
http://dx.doi.org/10.1021/la00087a026
http://dx.doi.org/10.1351/pac198961111845
http://dx.doi.org/10.1103/PhysRevLett.71.4186
http://dx.doi.org/10.1103/PhysRevE.62.4611
http://dx.doi.org/10.1039/f29868201789
http://dx.doi.org/10.1063/1.454434
http://dx.doi.org/10.1021/jp037696d
http://dx.doi.org/10.1063/1.1867376
http://dx.doi.org/10.1063/1.2229193
http://dx.doi.org/10.1103/PhysRevE.65.011202
http://dx.doi.org/10.1209/epl/i2003-00407-y
http://dx.doi.org/10.1103/PhysRevB.77.064422
http://dx.doi.org/10.1016/S0927-7757(97)00117-9
http://dx.doi.org/10.1007/s10909-007-9482-y
http://dx.doi.org/10.1016/j.physb.2003.08.060
http://dx.doi.org/10.1007/s10450-005-5908-5

	1. Introduction
	2. Models and methods
	2.1. The set-up: sample plus reservoir
	2.2. Atomistic model of a fluid in a single structured pore
	2.3. Coarse-grained model for adsorption in a disordered porous material

	3. Results on reservoir-size dependence for the atomistic model
	3.1. Grand-canonical isotherms
	3.2. Metastable states
	3.3. Mixed-ensemble results

	4. Results for the coarse-grained model
	4.1. Grand-canonical isotherms
	4.2. Canonical and mixed-ensemble isotherms

	5. Conclusion
	Acknowledgments
	Appendix A. DFT algorithms
	Appendix B. Notations and symbol definitions
	References

